Perfect powers that are sums of squares of an arithmetic progression

نویسندگان

چکیده

We determine all nontrivial integer solutions to the equation (x+r)2+(x+2r)2+⋯+(x+dr)2=yn for 2≤d≤10 and 1≤r≤104 with gcd(x,y)=1. make use of a factorization argument primitive divisors theorem due Bilu, Hanrot Voutier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Powers That Are Sums of Consecutive Cubes

Euler noted the relation 63= 33+43+53 and asked for other instances of cubes that are sums of consecutive cubes. Similar problems have been studied by Cunningham, Catalan, Gennochi, Lucas, Pagliani, Cassels, Uchiyama, Stroeker and Zhongfeng Zhang. In particular, Stroeker determined all squares that can be written as a sum of at most 50 consecutive cubes. We generalize Stroeker’s work by determi...

متن کامل

Perfect powers in arithmetic progression 1 PERFECT POWERS IN ARITHMETIC PROGRESSION. A NOTE ON THE INHOMOGENEOUS CASE

We show that the abc conjecture implies that the number of terms of any arithmetic progression consisting of almost perfect ”inhomogeneous” powers is bounded, moreover, if the exponents of the powers are all ≥ 4, then the number of such progressions is finite. We derive a similar statement unconditionally, provided that the exponents of the terms in the progression are bounded from above.

متن کامل

On powers that are sums of consecutive like powers

1 Background The problem of cubes that are sums of consecutive cubes goes back to Euler ([10] art. 249) who noted the remarkable relation 33 + 43 + 53 = 63. Similar problems were considered by several mathematicians during the nineteenth and early twentieth century as surveyed in Dickson’sHistory of the Theory of Numbers ([7] p. 582–588). These questions are still of interest today. For example...

متن کامل

Squares from Sums of Fixed Powers

In this paper, we show that if p and q are positive integers, then the polynomial exponential equation p + q = y2 can have at most two solutions in positive integer x and y. If such solutions exists, we are able to precisely characterize them. Our proof relies upon a result of Darmon and Merel, and Chabauty’s method for finding rational points on curves of higher genus.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2021

ISSN: ['0035-7596', '1945-3795']

DOI: https://doi.org/10.1216/rmj.2021.51.933